# Palladium-catalysed alkynylation of 2- or 3-bromopyridine <br> Weiwei Zhang, Jiang Cheng*, Zhengxu Huang, Oingqing Zhou, Xunmin Chen and Jianzhu Qian <br> Department of Chemistry, Wenzhou University, Mid. Xueyuan Rd, Wenzhou 325027, China 

2- or 3-Alkynylpyridines were prepared using a palladium complex, in the absence of copper ions or amines. The mild procedure tolerated a range of 1-alkynes giving 2- or 3-alkynylpyridine in moderate to good yield.

Keywords: palladium-catalysed alkynylation, 2- or 3-bromopyridine

Palladium-catalysed coupling of terminal alkynes with aryl or alkenyl iodides, is one of the most straightforward methods for the preparation of aryl alkynes and conjugated enynes. ${ }^{1}$ Usually the coupling is carried out in the presence of catalytic amounts of a palladium complex as well as copper iodide in an amine as solvent in order to obtain good yield. ${ }^{2,3}$
2- or 3-Alkynylpyridines are not only synthetically important intermediates for preparation of various compounds but also biologically important. However, less attention was paid in the comprehensive synthesis of 2- or 3-alkynylpyridine and the copper-free alkynylation of 2- or 3-bromopyridine was rarely reported. $\mathrm{The} \mathrm{Cu}(\mathrm{I})$ acetylides formed in situ could undergo oxidative dimerisation to give diaryldiacetylenes when they are exposed to air or an oxidant (a reaction known as the Glaser coupling). ${ }^{4}$ These by-products are generally difficult to separate from the desired products.
Zhang reported (diisopropylamino)diphenylphosphane L1, which is air-stable and easy to prepare, showed high efficiency in the Suzuki cross coupling reaction as well as in Sonogashira reaction. ${ }^{5}$ Accordingly, we hope to enlarge the application scope of the ligand in the Sonogashira reaction. Here we report a copper and amine free alkynylation reaction of 2- or 3-bromopyridine employing aminophosphine ligand (Scheme 1).

For the study, based on Zhang's results, ${ }^{5}$ THF was chosen as the solvent and potassium carbonate as the base. The reaction was run at $65^{\circ} \mathrm{C}$ under nitrogen in the presence of a combination of $\mathrm{Pd}(\mathrm{OAc})_{2}$ and $\mathbf{L} 1$ as catalyst.


## Scheme 1

Treatment of a mixture of 3-bromopyridine 1a ( 314 mg , 2 mmol ), 1-ethynylbenzene $\mathbf{2 a}(243 \mathrm{mg}, 2.4 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}$ ( $11.2 \mathrm{mg}, 0.05 \mathrm{mmol}$ ), and $\mathbf{L} 1(43.1 \mathrm{mg}, 0.15 \mathrm{mmol})$ in dry THF $(5 \mathrm{ml})$ at $65^{\circ} \mathrm{C}$ under inert atmosphere for 8 hours produced the desired product $\mathbf{3 a a}$ in $82 \%$ yield. This is a promising result, since no copper salt and amine was required. Then a series of alkynes was tested in the reaction conditions. Results are summarised in Table 1. When 3-bromopyridine acted as substrate, all of the alkynes substrates that possess alkyls or aryls attached to the triple $\mathrm{C}-\mathrm{C}$ bonds worked well under the reaction conditions in the absence of CuI or amine. Because the ligand will react with primary alcohol, prop-2-yn1 -ol was not a proper substrate in the procedure. ${ }^{6}$ However, the $3^{0}$ alcohol substrates, such as 2-methylbut-3-yn-2-ol (2e) and 1 -ethynyl cyclohexanol ( $\mathbf{2 g}$ ) were good substrates in the reaction and the yield reached $79 \%$ and $85 \%$, respectively (Table 1, entries 4, 7). When the hydroxyl group of 2e was protected by a methyl group, the coupling yield slightly

Table 1 Alkynylation of 2- or 3-bromopyridine

| Entry | Bromopyridine | Alkyne | Yield/ $\%{ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 1 | 3-bromopyridine | Ethnynlbenzene | 82 |
|  | 1a | 2a | 3 aa |
| 2 | 1a | Hex-1-yne | 70 |
|  |  | 2b | 3 ab |
| 3 | 1a | Ethynyltrimethylsilane | 86 |
|  |  | 2c | 3 ac |
| 4 | 1a | 2-Methylbut-3-yn-2-ol | 79 |
|  |  | 2d | 3 ad |
| 5 | 1a | 3-Methoxy-3-methylbut-1-yne | 89 |
|  |  | $2 e$ | 3 ae |
| 6 | 1a | N,N-Diethylprop-2-yn-1-amine | 54 |
|  |  | $2 f$ | 3af |
| 7 | 1a | 1-Ethynylcyclohexanol | 85 |
|  |  | $2 \mathrm{~g}$ | 3 ag |
| 8 | 1a | 1-Ethynylcyclohex-1-ene | 96 |
|  |  | 2h | 3ah |
| 9 | 2-Bromopyridine | 2a | 47 |
|  | 1b |  | 3ba |
| 10 | 1b | 2e | 47 3be |
| 11 | 1b | $2 f$ | 59 3bf |
| 12 | 1b | 2h | 95 3bh |

( $828 \mathrm{mg}, 6 \mathrm{mmol}$ ) and L1 ( $43.1 \mathrm{mg}, 0.15 \mathrm{mmol}$ ) in 5 ml of THF at $65^{\circ} \mathrm{C}$ for 8 h .

[^0]increased to $89 \%$ (Table 1, entry 5). If 2-bromopyridine acted as substrate, except for $\mathbf{2 h}$, only moderate yields were achieved (Table 1, entries 9, 10, 11). For substrate 2h, which possesses both a $\mathrm{C}-\mathrm{C}$ double bond and a $\mathrm{C}-\mathrm{C}$ triple bond, only the Sonogashira cross-coupling product (3ah, 3bh) was isolated in $96 \%$ and $95 \%$ yield, respectively, and no Heck reaction product was detected (Table 1, entries 8, 12).
In conclusion, we have developed a facile and mild way to the alkynylation of 3- or 2-bromopyridine in the absence of copper and amine. Aminophosphine was used as the ligand. The ligand is easy to prepare from commercially available material and is air-stable.

## Experimental

General
All reactions were conducted under a nitrogen atmosphere using standard Schlenk techniques. Column chromatography was performed using EM Silica gel 60 (300-400 mesh), ${ }^{1} \mathrm{H}$ NMR was recorded on a 300 MHz spectrometer, and ${ }^{13} \mathrm{C}$ NMR was at 75 MHz . Chemical shifts were reported in ppm downfield from tetramethylsilane with the solvent resonance as the internal standard.

## Materials

THF was distilled from sodium-diphenylacetone prior to use. $\mathrm{K}_{2} \mathrm{CO}_{3}$, 2-, 3-bromopyridine and alkynes were used directly as obtained commercially unless otherwise noted.

## General procedure for alkynylation reaction

Under nitrogen atmosphere, a Schlenk reaction tube was charged with bromo pyridine $1(2 \mathrm{mmol})$, alkyne $2(2.4 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}$ $(828 \mathrm{mg}, 6 \mathrm{mmol}), \mathrm{Pd}(\mathrm{OAc})_{2}(11.2 \mathrm{mg}, 0.05 \mathrm{mmol}), \mathbf{L} 1(43.1 \mathrm{mg}$, $0.15 \mathrm{mmol})$ and THF $(5 \mathrm{ml})$. The reaction tube was purged with $\mathrm{N}_{2}$ under a dry ice bath. After the mixture was heated at $65^{\circ} \mathrm{C}$ for 8 h , the solvent was evaporated under reduced pressure and the residue was purified by flash column chromatography on a silica gel to give the product 3.
3aa: 3-(2-phenylethynyl)pyridine. ${ }^{1}{ }^{1} \mathrm{H}$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.77(\mathrm{~s}, 1 \mathrm{H}), 8.57-8.55(\mathrm{~m}, 1 \mathrm{H}), 7.83-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}$, 2H), 7.39-7.36 (m, 3H), 7.31-7.27 (m, 1H). ${ }^{13} \mathrm{C}$ NMR ( 75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 152.2,148.5,138.4,131.7,128.8,128.4,123.0,122.5$, 120.5, 92.6, 85.9.

3ab: 3-(hex-1-ynyl)pyridine. ${ }^{8}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.62(\mathrm{~s}, 1 \mathrm{H})$, 8.49-8.47 (m, 1H), 7.69-7.65 (m, 1H), 7.26-7.19 (m, 1H), 2.43 (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.43(\mathrm{~m}, 2 \mathrm{H}), 0.97$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.3,147.9,138.4,122.8$, 121.2, 94.0, 77.4, 30.6, 22.0, 19.1, 13.6.

3ac: 3-(2-(trimethylsilyl)ethynyl)pyridine. ${ }^{9}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.52-8.50(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.19$ $(\mathrm{m}, 1 \mathrm{H}), 0.22(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 152.6,148.7,138.8$, $122.8,120.3,101.4,98.2,-0.60$.
3ad: 2-methyl-4-(pyridin-3-yl)but-3-yn-2-ol. ${ }^{10}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.52-8.50(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23$ $(\mathrm{m}, 1 \mathrm{H}), 3.20(\mathrm{br}, 1 \mathrm{H}), 1.63(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.1$, 148.3, 138.7, 123.0, 120.1, 97.7, 78.6, 65.3, 31.3.

3ae: 3-(3-methoxy-3-methylbut-1-ynyl)pyridine. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.64(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.20$ $(\mathrm{m}, 1 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 1.53(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.3$, 148.6, 138.6, 122.9, 120.3, 94.5, 80.7, 70.8, 51.7, 28.2. MS (EI) $\mathrm{m} / \mathrm{z}$ $175\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{cm}^{-1}\right) 3029,2958,2161,1579,1475,1408,1185,1022$, 863. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 75.40 ; \mathrm{H}, 7.48$. Found: C, 75.31; H, 7.63 .

3af: N,N-diethyl-3-(pyridin-3-yl)prop-2-yn-1-amine. ${ }^{7}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.65(\mathrm{~s}, 1 \mathrm{H}), 8.51-8.49(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H})$, $7.24-7.22(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.61(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.11(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 152.4,148.3,138.6,122.9$, 120.4, 88.2, 81.6, 47.3, 41.5, 12.6.

3ag: 1-(2-(pyridin-3-yl)ethynyl)cyclohexanol. ${ }^{1} \mathrm{H}$ NMR ( 300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.71(\mathrm{~s}, 1 \mathrm{H}), 8.51-8.49(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H})$, 7.24-7.22 (m, 1H), $3.66(\mathrm{br}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.52$ $(\mathrm{m}, 6 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.1$, $148.2,138.6,123.0,120.3,97.0,80.6,68.7,39.8,25.1,23.3$. MS (EI) $\mathrm{m} / \mathrm{z} 201\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{cm}^{-1}\right) 3363,2933,2141,1563,1475,1408,1185$, 1075, 863. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 77.58 ; \mathrm{H}, 7.51$. Found: C, 77.87; H, 7.60.

3ah: 3-(2-cyclohexenylethynyl)pyridine. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.62$ $(\mathrm{s}, 1 \mathrm{H}), 8.47-8.44(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 1 \mathrm{H})$, $6.25-6.22(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 4 \mathrm{H}), 1.67-1.58$ $(\mathrm{m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 152.0,148.0,138.2,136.3,122.9$, $120.9,120.3,94.5,83.3,29.0,25.8,22.2,21.4$. MS (EI) $m / z 183\left(\mathrm{M}^{+}\right)$; IR ( $\mathrm{cm}^{-1}$ ) 3027, 2931, 2859, 2203, 1672, 1560, 1475, 1410, 842, 704. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}$ : C, 85.21; H, 7.15. Found: C, 85.44; H, 7.30 .

3ba: 2-(2-phenylethynyl)pyridine. ${ }^{11}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.64-8.63$ $(\mathrm{m}, 1 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.52(\mathrm{~m}, 1 \mathrm{H})$, 7.38-7.36 (m, 3H), 7.27-7.25 (m, 1H). ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 150.1$, 143.5, 136.1, 132.0, 128.9, 128.4, 127.1, 122.7, 122.3, 89.2, 88.6.

3be: 2-(3-methoxy-3-methylbut-1-ynyl)pyridine. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.56-8.55(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.42-7.40(\mathrm{~m}, 1 \mathrm{H})$, 7.20-7.17 (m, 1H), $3.44(\mathrm{~s}, 3 \mathrm{H}), 1.55(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 149.9,143.0,136.1,127.2,122.8,91.0,83.6,70.8,51.9,28.1$. MS (EI) $m / z$ 175(M ${ }^{+}$); IR ( $\left.\mathrm{cm}^{-1}\right) 3052,2985,2235,1582,1463$, 1428, 1172, 1073, 863. Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}: \mathrm{C}, 75.40 ; \mathrm{H}, 7.48$. Found: C, 75.31; H, 7.63.

3bf: N,N-diethyl-3-(pyridine-2-yl)prop-2-yn-1-amine. ${ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.54-8.52(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.57(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}$, $1 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.62(\mathrm{q}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.14$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 149.8,143.3,136.0,127.1$, 122.6, 84.9, 84.6, 47.4, 41.3, 12.6.

3bh: 2-(2-cyclohexenylethynyl)pyridine. ${ }^{1} \mathrm{H} \quad \mathrm{NMR} \quad\left(\mathrm{CDCl}_{3}\right)$ $\delta 8.53-8.51(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H})$, 7.15-7.11 (m, 1H), 7.30-7.28 (m, 1H), 2.23-2.21 (m, 2H), 2.13-2.11 $(\mathrm{m}, 2 \mathrm{H}), 1.68-1.57(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 149.8,143.7$, 137.2, 136.0, 126.8, 122.2, 120.1, 91.3, 86.2, 28.8, 25.8, 22.2, 21.4. MS (EI) $m / z 183\left(\mathrm{M}^{+}\right)$; IR $\left(\mathrm{cm}^{-1}\right) 3027,2931,2204,1579,1462,1148$, 1076, 842, 778. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}: \mathrm{C}, 85.21 ; \mathrm{H}, 7.15$. Found: C, 85.29; H, 7.26.

We thank the National Natural Science Foundation of China (20504023), the Natural Science Foundation of Zhejiang Province (No. Y404039) for financial support.

Received 27 September 2006; accepted 10 November 2006 Paper 06/4217

## References

1 (a) K. Sonogashira, Y. Tohda and N. Hagihara, Tetrahedron Lett., 1975, 16, 4467; (b) L. Cassar, J. Organomet. Chem., 1975, 93, 253; (c) H.A Dieck and F.R. Heck, J. Organomet. Chem., 1975, 93, 259.
2 For reviews, see: (a) K. Sonogashira In Comprehensive Organic Synthesis, B.M Trost and I. Fleming, (eds.) Pergamon Press, New York, 1991, vol. 3, 521; (b) R. Rossi, A. Carpita and F. Bellina, Org. Prep. Proc. Int., 1995, 27, 129; (c) J. Tsuji, Palladium Reagents and Catalysts. Wiley, Chichester, 1995, p. 168; (d) K.C. Nicolaou and E.J. Sorensen, Classics in Total Synthesis. VCH, Weinheim, 1996, p. 582; (e) L. Brandsma, S.F. Vasilevsky and H.D. Verkruijsse, Application of Transition Metal Catalysts in Organic Synthesis, Springer, Berlin, 1998, p. 179; (f) K. Sonogashira In Metal-Catalysed Cross-Coupling Reactions, F. Diederich and P.J. Stang, (eds.) Wiley-VCH, Weinheim, 1998, p. 203.

3 For examples using aryl bromides in the Sonogashira reaction, see: (a) M. Lemhadri, H. Doucet and M. Santelli, Synthesis, 2005, 1359; (b) M. Lopez-Deber, L. Castedo and J. Granja, Org. Lett., 2001, 3, 2823; (c) M. Unroe and B. Reinhardt, Synthesis, 1987, 981; (d) L. Bleicher N. Cosford A. Herbaut, J. McCallum and I. McDonald, J. Org. Chem., 1998, 63, 1109; (e) M. Inouye, K. Fujimoto M. Furusyo and H. Nakazumi, J. Am. Chem. Soc., 1999, 121, 1452; (f) A. Basak, J. Shain, K. Khamrai, K Rudra and A. Basak, J. Chem. Soc., Perkin Trans. 1, 2000, 1955.
4 P. Siemsen, R.C. Livingston and F. Diederich, Angew. Chem. Int. Ed., 2000, 39, 2632.
5 (a) J. Cheng, F. Wang, J. Xu, Y. Pan and Z. Zhang, Tetrahedron Lett., 2003, 44, 7095; (b) J. Cheng, Y. Sun, F. Wang, J. Xu, Y. Pan and Z. Zhang, J. Org. Chem,. 2004, 69, 5428.

6 T. Mukaiyama, W. Kikuchi and T. Shintou, Chem. Lett., 2003, 32, 300.
7 M. Lemhadri, H. Doucet and M. Santelli, Synthesis, 2005, 1359.
8 Z. Novak, A. Szabo, J. Repasi and A Kotschy, J. Org. Chem., 2003, 68, 3327.

9 M. Erdelyi and A. Gogoll, J. Org. Chem,. 2001, 66, 4165.
10 T. Nagy, A. Csampai and A. Kotschy, Tetrahedron, 2005, 61, 9767.
11 P. Li, L.Wang and H. Li, Tetrahedron, 2005, 61, 8633.


[^0]:    * Correspondent. E-mail: shchengjiang@yahoo.com.cn

